O ct 2 00 1 On the existence of completely saturated packings and completely reduced coverings

نویسنده

  • Lewis Bowen
چکیده

We prove the following conjecture of G. Fejes Toth, G. Kuperberg, and W. Kuperberg: every body K in either n-dimensional Euclidean or n-dimensional hyperbolic space admits a completely saturated packing and a completely reduced covering. Also we prove the following counterintuitive result: for every ǫ > 0, there is a body K in hyperbolic n-space which admits a completely saturated packing with density less than ǫ but which also admits a tiling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Saturated Packings and Reduced Coverings

We introduce and study certain notions which might serve as substitutes for maximum density packings and minimum density coverings. A body is a compact connected set which is the closure of its interior. A packing P with congruent replicas of a body K is n-saturated if no n− 1 members of it can be replaced with n replicas of K, and it is completely saturated if it is n-saturated for each n ≥ 1....

متن کامل

2 00 8 On densest packings of equal balls of R n and Marcinkiewicz spaces

We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkie...

متن کامل

Notions of denseness

The notion of a completely saturated packing [1] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We define two related notions: uniformly recurrent dense packings and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, ...

متن کامل

On densest packings of equal balls of Rn and Marcinkiewicz spaces

We investigate, by “ à la Marcinkiewicz” techniques applied to the (asymptotic) density function, how dense systems of equal spheres of Rn, n ≥ 1, can be partitioned at infinity in order to allow the computation of their density as a true limit and not a limsup. The density of a packing of equal balls is the norm 1 of the characteristic function of the systems of balls in the sense of Marcinkie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008